Здравствуйте, гость ( Вход | Регистрация )
|
![]() |
Прежде чем задать вопрос, убедитесь, что его еще не задавали и ответ на него уже не дали. Проверьте Раздел Новости Воспользуйтесь расширенным Поиском, к нему прилагается помощь на русском языке по методам поиска. Также не забываем про общие ПРАВИЛА форумов. Уважайте друг друга и не создавайте тем-близнецов.
![]() |
![]() |
| ![]() |
![]()
Сообщение
#1
|
|
Ст.лейтенант ![]() Группа: Validating Сообщений: 1511 Регистрация: 1.1.2006 Из: Руси Пол: ![]() Сегмент: 14 ![]() |
Пожалуй, наиглавнейшим моментом в вопросе четкого функционирования компьютера является настройка параметров различных подсистем из BIOS Setup, мимо которой пройти просто невозможно. Основная система ввода/вывода (BIOS - Basic Input Output System) является своего рода "прослойкой" между аппаратной (комплектующие) и программной (операционная система) частями ПК. В ней содержится информация относительно установленных компонент и общих настроек всей системы. Однако большинство установок имеют свою специфику, определяя некоторые особенности и тонкости функционирования управляемых ими подсистем. Систему можно настроить на максимальную эффективность, установив соответствующие параметры на максимально возможные значения с точки зрения производительности, но при этом нет никакой гарантии, что компьютер будет работать надежно и без сбоев. С другой стороны, систему можно настроить на максимальную отказоустойчивость, "загрубив" при этом производительность. Каждая из этих крайностей имеет свои плюсы и минусы, поэтому обычно стремятся достичь "золотой середины", варьируя значения соответствующих пунктов настройки BIOS Setup. Таким образом, можно получить оптимально сбалансированные параметры и добиться максимально возможной производительности при обеспечении стабильного функционирования ПК. Основными моментами в данном вопросе являются установки параметров, предназначенных для конфигурирования системного ОЗУ (оперативной памяти): всевозможные задержки, специфические режимы работы, общие схемы функционирования и т.д. - все, что касается этого вопроса можно найти в разделе "Advanced Chipset Setup" (или "Chipset Features Setup") в BIOS Setup.
|
|
![]() |
![]() |
![]() |
|
![]() |
![]()
Сообщение
#2
|
|
Ст.лейтенант ![]() Группа: Validating Сообщений: 1511 Регистрация: 1.1.2006 Из: Руси Пол: ![]() Сегмент: 14 ![]() |
[highlight]SDRAM Configuration[/highlight]
Параметр, определяющий способ настройки подсистемы памяти на основе SDRAM и принимающий значения: by SPD (необходимые параметры считываются из специальной микросхемы последовательного детектирования, устанавливаемой на модуле памяти, и полностью оптимально согласованы с типом и индивидуальными характеристиками установленных на нем микросхем) или Manual (разрешено варьировать определенные параметры "вручную", причем соответствующие пункты меню этих параметров становятся доступными для изменения). Суть данной установки сводится к тому, что в случае использования схемы Manual разрешается доступ к изменению параметров "SDRAM CAS Latency Time", "SDRAM RAS-to-CAS Delay" и "SDRAM RAS Precharge Time", которые образуют основную тайминговую схему работы памяти (CL-tRCD-tRP соответственно) и позволяют осуществлять более гибкую настройку подсистемы на основе синхронного ДОЗУ - все аналогично рассматриваемому ранее параметру "Auto Configuration". В случае использования схемы SPD требуемые значения автоматически загружаются из микросхемы EEPROM, в которой производитель конкретного модуля памяти заранее "прошивает" необходимые значения временных параметров (таймингов), гарантируя стабильную работу. При синхронной работе с памятью операции выполняются строго с тактами системного генератора. При этом само управление синхронного ДОЗУ несколько усложняется относительно асинхронного режима, поскольку приходится вводить дополнительные защелки, хранящие адреса данные и состояния сигналов управления. В результате этого вместо продолжительности цикла доступа, применяющегося для характеристики в асинхронных системах, для описания быстродействия SDRAM прибегают к указанию длительности периода синхросигнала (tCLK - Clock time - величина, обратно пропорциональная частоте следования синхроимпульсов). Поэтому в некоторых разновидностях BIOS возможно указание непосредственно длительности периода синхросигнала: 7ns (максимальная частота функционирования данного модуля - 143MHz, следовательно, используемые временные схемы будут оптимизированы для микросхем памяти с параметром -7, указываемом непосредственно на самой микросхеме), 8ns (максимальная частота функционирования данного модуля - 125MHz, поэтому временные установки будут оптимизированы для приборов памяти с параметром -8) и 10ns (максимальная частота функционирования данного модуля - 100MHz, поэтому временные установки будут оптимизированы для микросхем памяти с параметром -10), которые работают аналогично описываемым ранее в пункте "Auto Configuration", но встречаются сравнительно редко. Стандартно, массив микросхемы содержит логические банки (Bank), количество и организация которых определяется индивидуальностью (фундаментальностью) самой архитектуры и конечной емкостью микросхемы. Банки содержат строки (Row), которые, в свою очередь, содержат столбцы (Column) - матрица, образуемая такой иерархией, и является ядром микросхемы памяти. Строка - это объем считываемых или записываемых данных в один из нескольких банков ядра. Столбцы - подмножества строк, которые считываются или записываются в индивидуальных фазах операций чтения/записи. Рассмотрим последовательно продвижение данных по микросхеме. Обычно цикл начинается по приходу команды активизации банка, которая выбирает и активирует банк и строку массива. В течение следующего цикла информация передается на внутреннюю шину данных и направляется на усилители уровня (как говорилось ранее, своего рода "накопитель", играющий роль как усилителя сигнала, так и временного буфера). Когда усиленный уровень сигнала достигает необходимого значения, данные запираются (Latch) внутренним синхросигналом - этот процесс, именуемый задержкой между определением адреса строки и столбца (tRCD - RAS#-to-CAS# Delay), занимает 2-3 цикла системной шины (количество периодов синхросигнала). После этой задержки команда чтения может подаваться совместно с адресом столбца, чтобы выбрать адрес первого слова (в данном случае, объем данных, передаваемых за один цикл, равный ширине шины данных микросхемы памяти), которое надо считать с усилителей уровня. После выставления команды чтения выполняется двух- или трехтактная задержка строба выбора столбца (задержка сигнала CAS# - CAS# Latency или просто CL), в течение которой данные, выбранные из усилителей уровня, синхронизируются и передаются на внешние выводы микросхемы (линии DQ). За первым словом следуют остальные в течение каждого последующего синхросигнала, отрабатывая полную установленную длительность пакета (Burst Length) - количество непрерывно передаваемых слов за одну фазу передачи данных. Лишь после того, как вся информация передалась, данные можно возвратить обратно из усилителей уровня в строку пустых ячеек массива для восстановления его содержимого, что занимает 2-3 тактовых цикла. Динамический, а значит обладающий свойством ослабевания сигнала и утечки, по своей природе массив ячеек должен регенерировать их содержимое. Периоды восстановления заряда устанавливаются регенерирующим контроллером программы мониторинга, выполняемой счетчиком регенерации (Refresh Counter) - подобное восстановление требует 7-10 циклов, в течение которых поток данных прерывается. |
|
![]() |
![]() |
|
![]() |
![]() ![]() |
![]() |
Текстовая версия | Сейчас: 8.7.2025, 23:37 |